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ABSTRACT 

Any  measu re  preserving endomorph i sm  genera tes  bo th  a decreasing 

sequence of a -a lgebras  and  an invertible extension.  In this  paper  we 

exhibit  a dyadic measu re  preserving endomorph i sm  ( X , T , # )  such tha t  

the  decreasing sequence of a -a lgebras  t ha t  it genera tes  is not  isomorphic 

to the  s t anda rd  decreasing sequence of a-algebras .  However the  invertible 

ex tens ion  is i somorphic  to the  Bernoulli  two shift.  

1. Introduct ion  

Consider the one sided Bernoulli two shift. This transformation has state space 

X = {0, 1} N and (1/2,1/2) product measure #. The action on X is T(x)~ = x ,+l .  

In this paper  we consider two properties that  the one sided Bernoulli two shift has 

and give an example of an cndomorphism which shares one of these properties 

but not the other. 

The first property is the decreasing sequence of a-algebras that  the one sided 

Bernoulli two shift generates. A decreasing sequence of a-algebras is a measure 
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space (X,~'0,#),  and a sequence of a-algebras ~-0 D ~1 D ~'u'" ". Let ~" be 

the Borel a-algebra of X and let $'~ = T - i J  c. This sequence has the property 

that ~il~'i+l has 2 point fibers of equal mass for every i. A decreasing sequence 

of a-algebras with this property (and an endomorphism which generates such a 

sequence) is called dyadic .  This example has the property that [~ F~ is t r ivial  

A. Vershik, who began the modern study of such decreasing sequences of a- 

algebras [8], refers to this example as the "standard dyadic" example. Any mea- 

sure preserving endomorphism (X, T, 9 v, #) generates a decreasing sequence of 

a-algebras by setting ~-i = T-~9 v. 

Two decreasing sequences of a-algebras are called i s o m o r p h i c  if there exists 

a 1-1 measure preserving map between the two spaces that carries the i-th a- 

algebras to each other. In [9] Vershik showed that there exist dyadic sequences 

of a-algebras with trivial intersection that are not isomorphic to the standard 

dyadic example. In [9] Vershik also gave a necessary and sufficient condition 

for a dyadic decreasing sequence of a-algebras to be standard. An equivalent 

description of standardness for dyadic sequences is for there to exist a sequence 

of partitions {Pi} of X into two sets, each of measure 1/2, such that 

1. the partitions Pi are mutually independent and 

2. for each i, ~, = Vu~__, P~. 

It is important to note that in the case that the decreasing sequence of a- 

algebras comes from an endomorphism there is no assumption that the Pi are 

stationary (i.e., Pi is not necessarily T-I(P~_I)) .  If an endomorphism generates 

a decreasing sequence of a-algebras that is isomorphic to the standard dyadic 

decreasing sequence of a-algebras, then we call that endomorphism s t a n d a r d .  

Any measure preserving endomorphism (X, T, ~ ,  #) also generates an invertible 

measure preserving automorphism (2~, T, 9 e, #). We say that the system (2(, T,/2) 

is isomorphic to the (invertible) Bernoulli 2 shift if there exists a partition P of 

into two sets, each of measure 1/2, such that 

1. the partitions TiP are mutually independent and 

2..~= V,,~176 
If a dyadic endomorphism has an invertible extension which is isomorphic to the 

(invertible) Bernoulli 2 shift, then we say the endomorphsim is Bernou l l i .  

Both Bernoulliness and standardness are then equivalent to finding a mutually 

independent sequence of partitions which generate the entire a-algebra. There 

is no a priori reason that a standard endomorphism must be Bernoulli or that a 

Bernoulli endomorphism must be standard as in the case of standardness the par- 

titions must be past measurable but not necessarily stationary and for Bernoulli- 
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ness they must  be s ta t ionary but  not necessarily past  measurable. In this paper  

we show tha t  in fact neither condition is stronger than  the other. 

It  is already known tha t  s tandard  does not imply Bernoulliness of an endo- 

morphism. Feldman and Rudolph  proved in [3] tha t  a certain class of dyadic 

endomorphisms generate s tandard  decreasing sequences of a-algebras.  Among  

these is an endomorphism which Bur ton  showed has a two sided extension which 

is not isomorphic to a Bernoulli shift [1]. In this paper  we construct  a dyadic 

endomorphs im with entropy log 2 tha t  is Bernoulli but  the endomorphism is 

not s tandard.  In [9] Vershik created an infinite entropy endomorphism which is 

Bernoulli but  not s tandard.  To complete the picture we mention tha t  the one 

sided Bernoulli 2 shift is bo th  Bernoulli and standard.  The IT, T -1] endomor-  

phism was proved not to be Bernoulli by Kalikow [6] and not to be s tandard  by 

Heicklen and Hoffman [5]. 

2. N o t a t i o n  

We begin to introduce some notat ion to help unders tand the tree s tructure of a 

dyadic endomorphism. Consider a rooted 2-ary tree with 2 '~ vertices at  depth 

n _> 0. Each vertex at depth n connects to two vertices at the depth n + 1. For 

each pair of vertices at depth n + 1 which connect to the same vertex at depth 

n we label one of the vertices 0 and the other vertex 1. This then gives each 

vertex a second label which is a nontrivial finite word of zeros and ones. This is 

given by a sequence of values we see along the unique pa th  of vertices from the 

root  to the given vertex. In this form we can concatenate  vertices v ~ and v by 

concatenat ing their labels. Call this labeled tree T.  If  we t runcate  the tree at 

depth n > 0 we call it T~. 

We also use the nota t ion v E T (or v E T~) to indicate tha t  v is a vertex of 7- 

(or Tn). set of vertices ~Jn for For v C 7- and at depth i (i.e., v c ~ \ T~-I) we 

write Ivl = i and we write v as a list of values v l , . . . ,  v~ from {0, 1} where this 

is the list of labels of the vertices along the branch from the root  to v. We say 

tha t  v t is an e x t e n s i o n  of v if v r = vv" for some v" c T.  We also say tha t  v is 

a c o n t r a c t i o n  of v ~. 

Let (X, T, #, .~) be a uniformly 2 to 1 endomorphism. Then  each x C X has 

two inverse images. There exists a measurable two set par t i t ion K of X such tha t  

almost  every x has one preimage in each element of K.  Label the sets of K as K0 

and K1. For each i C {0, 1} and x C X define T~(x) to  be the preimage o f x  in K~. 

We now define a set of p a r t i a l  i n v e r s e s  for T. For v = ( v l , . . . ,  v,) E T define 

Tv(x) -- Tv~(...(T~I(x)) ). Also define the tree name of x by T~(v) = K(T,(x)) .  
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More generally, for any finite set P we call a function h from 7" to P a 7", P name. 

For us a s u b t r e e  of 7" will be a path  connected set of vertices. Notice that  this 

means a subtree will have a r o o t  which is the unique vertex in it of least depth, 

and will consist of a collection of connected paths descending from this root. If  

7"~ is any subtree of 7" then a 7"~, P name h is any function from 7"~ to P.  A 

7"~, P name on a subtree gives rise to a collection of names indexed by intervals 

in - N  by listing in negative order the names that  appear  along vertices of the 

subtree (with multiplicities). Be sure to keep in mind that  in this translation 

vertices at depth n in the tree correspond to point in T-" for the action, i.e., 

there is a switch in sign. More accurately, such a name on a subtree gives rise 

to a measure or distribution on such finite names where each name of length t is 

given mass 2 - t  (again counting multiplicities). If  this original tree name is the 

tree name of a point, then this distribution will be the conditional distribution 

of the various past cylinders given the path  to the root of the subtree. 

We say that  a vertex v is in the b o t t o m  of the subtree T ~ if no extension of v 

is a vertex in T ~. We define T ~,  the c o n c a t e n a t i o n  of two subtrees T ~ and T ~, 

as follows. Let 

T" '  = T ' U  ( Uo vT") 
botto f T ~ 

where the second union is taken over all v which are in the bot tom of T t. That  

is to say we attach to each vertex in the bo t tom of T a copy of the subtree T ~. 

We concatenate tree names in an analogous manner by extending the labeling of 

7" to be the labeling of 7"~ on each of the copies of 7"~ attached at the bo t tom of 

7". 

Let ,4 be the collection of all bijections of the vertices of 7" that  preserve the 

tree structure. We refer to this as the group of t r e e  a u t o m o r p h i s m s .  Let An 

be the bijections of the vertices of Tn preserving the tree structure. To give a 

representation to such automorphisms A notice that  from A we obtain a permu- 

tat ion Try of {0, 1} at each vertex giving the rearrangement of its 2 immediate 

extensions. An automorphism of T~ will be represented by an assignment of a 

permutat ion of {0, 1} to each vertex of the tree including the root and excepting 

those at depth n. 

Fix a parti t ion P.  The Hamming metric between two T~, P names W and W ~ 

is given by 

d~(W, ,,jT~/'~ = # of v E T~ \ T~-I  such that  W(v) ~ W'(v) 
2 n 
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Now define 

vn(y,Y') = vP(y,Y') = inf (d~(A(Ty),Ty,)). 
AEAn 

In the case that {$-~} comes from a dyadic endomorphism Vershik's standardness 

criterion is the following. 

THEOREM 2.1 [9]: {$'~} is standard iff[or every finite partition P, 

/C(y,  y')d(. 0. P) • 

Remark 2.1: A proof of this can also be found in [4]. 

3. C o n s t r u c t i o n  

The construction will be done by cutting and stacking. Cutting and stacking 

in Z can be viewed in two ways. One can regard the construction as building a 

sequence of Rokhlin towers of intervals labeled by symbols from some labeling set 

P. Successive towers are built by slicing up and restacking. The map is defined 

on ever larger parts of the space until it is eventually defined ahnost everywhere. 

One can also view the stack as a distribution on the set of all finite names (most, 

of course, given mass zero). For each length k C N one can construct a measure on 

cylinders of length k from each stack by calculating the density of occurrence of 

that cylinder within the stack. These measures on cylinders will converge weak* 

to a shift invariant measure on pZ. The constructed action then is the shift map 

on pZ. Usually both these views give the same action, although this depends 

on whether the labels in the first description give a generating partition for the 

action. For our construction we will follow the latter perspective by constructing 

names on finite subtrees. We have already described how to translate such a 

name into a distribution on names on intervals in -N.  This translation links our 

work to the traditional cutting and stacking construction of Z actions. 

The construction will build inductively one TH(u) name, B,~ for each n. From 

this sequence of names we will construct a sequence of measures on Tk, P-names 

by calculating the density of occurrences of the subtree name within each B~. 

These measure will converge weak* to a measure on T, P names. This measure 

extends to a shift invariant measure on pZ and its restriction to P~ will be the 

endomorphism we are interested in. Disjoint occurrences of copies of the name 

B,~ in the past trees of points will place a block structure on these tree names. 

We consider two points x and y and their 2 m inverse images under (T-m). The 

construction will be done in such a way that it will be impossible to find a 

pairing of the 2 m inverse images of x with those of y by a tree automorphism 
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t ha t  will ma t ch  up the block s t ructures  of the paired inverse images.  But  there is 

a bijection of the inverse images which does not preserve the tree s t ructure  and 

which matches  up the block structure.  

To do the construct ion we will need three sequences of integers, H ( n ) ,  the 

height of n tree, N(n), the number  of copies of n - 1 trees conca tena ted  to form 

the n tree, and a p a r a m e t e r  F(n). These sequences will be defined inductively. 

Let  H(1)  -- 1000. Given tha t  H(n - 1) has been defined, choose F(n) so tha t  

> 2~+ l~176  - 1). Also choose N(n) so tha t  

H(n) = 3F(n )  § N(n)H(n - 1) _> 2n+l~176 

An element of the par t i t ion  P is of the form (a, n, v), where a �9 {0, 1}, n �9 N, 

and v �9 T.  Notice tha t  P will not be a finite par t i t ion.  Both  s tandardness  

and Bernoullicity are character ized by the behavior  of finite part i t ions.  We will 

explain how this issue is handled at  the appropr ia te  points. 

For any v �9 T define 

fn(v) = m i n i m u m  {3F(n) ,  the smallest  k < Ivl such tha t  ~-~k - 1 v i  = F ( n ) } .  

We will now inductively define Ts(n),  P names  which we call Bn. The  name  B1 

is defined so tha t  each vector  v C TH(1) gets a distinct label. For any v C TH(1) 

assign Bl(v) = (Vlv I, 1, v). 

Now assume tha t  B,~ has been defined. Create  the subtree tha t  consists of all 

vectors  v E T3F(~) such t ha t  ~ 1  vi <_ F(n). Give each of these vertices a label 

in P which is not seen in Bn. Now concatenate  this tree name with N(n) copies 

of B ~ - I .  Then  for any ver tex v C Ts(n) which has not yet received a label assign 

it a label which has not been used before. 

To make  this precise for any v E "]-H(n) such tha t  )-~1 vi < F(n) or 

Ivl > fn(V) + g ( n ) H ( n -  1) assign Bn(v) = (Vlvl,n,v). If  v e "]-H(n) such tha t  

Iv l -  f~(v) �9 [1, N(n)H(n - 1)] let 

~i = vi+ln (v)+ L(l~l-ln (v))/H(n-1)J H(n-1), 

where LxJ is the greatest  integer less than  or equal to x. Then  define B,~(v) = 
B,~-I  (~)). This  inductively defines Bn. 

The  "-FH(n) name Bn defines a measure  #n on P ~ ,  k < H(n) as follows. Any 

h E pT~ receives mass  

1 
#,,(h) = ~ (H(n) - k + 1)21vl 
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where the sum is taken over all v E TH(~)-k such tha t  h(v')  -- B~(vv ' )  for all 

v I E TH(,~-I). The measures #n, which project,  as we have described, to measures 

on names labeled by I - n , . . . , - 1 ]  we still refer to as #n. As these measures on 

names are precisely what  would arise if one did t radi t ional  cut t ing a stacking to 

create the distr ibution on names associated with B~, we conclude the #~ converge 

in the weak * topology to a shift invariant measure ft on pZ. Rest r ic t /5  to P~  

to give the endomorphism T we claim is Bernoulli but  not s tandard.  

As the labels used to fill in the top and b o t t o m  of the tree name only appear  

there, the block structure on the past  trees of points are unique. 

Let K0 be the set o f x  C X such tha t  P ( x )  is of the form (0, *, *) and K1 be the 

set of x E X such tha t  P ( x )  is of the form (1, *, *). One sees from the construct ion 

tha t  T: K0 --+ X and T: K1 -+ X are bo th  1-1 and onto. This defines partial  

inverses T o  I and T~ -1 bo th  of which have constant  R.N. derivatives of 1/2 and 

hence T is a uniformly dyadic endomorphism. By the method  described in the 

previous section we can define Tv for any v E 7" and Tx for any x c X.  

We say tha t  a point  x E X is in  t h e  n b l o c k  if there exists vx E TH(n) such 

tha t  for all v ~ C 7-H(n)_iVxl we have 

Tx(v')  =- Bn(vxv ' ) .  

We say tha t  x is in the t o p  o f  t h e  n b l o c k  if Iv~I -- 0. For general tree names 

we will use the corresponding definitions of being in the n block or being in the 

top of the n block. 

LEMMA 3.1: For a n y n  > 2 and k C [0, H ( n  - 1)) and l > 3F(n)  the number  o f  

V E Tl \ ~1--1 SUCh that  f ( v ' )  = k mod U ( n  - 1) is less than 21+l /H(n  - 1). 

Proof: It  causes no loss of generality to assume tha t  l = 3F(n) .  Since 

~ - ~  > >  H ( n  - 1) this follows from the local central limit theorem. See, 

for example, [2] page 113. I 

A slightly different version of this lemma is the following. 

COROLLARY 3 . 1 : s u P k 2  -k  ( #  Of~ such tha t  I~l = k and T~Bn is in the top o f  

the n - 1 block) ~_ 2 / H ( n  - 1). 

Prod:  It  causes no loss of generality to assume tha t  k _> 3F(n) .  This is 

because if k _< 3F(n) ,  then the quant i ty  we are t rying to maximize is greater 

for k + H ( n  - 1) than  for k. Then this is just  a res ta tement  of the previous 

lemma. I 
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LEMMA 3.2: The endomorphism (X, T, #) has entropy log2. 

Proof: By definition P is a generating part i t ion for the endomorphism. Thus 

the entropy of the endomorphism is the same as the entropy of the endomor-  

phism relative to P .  For almost  every point x E X and integer k there is an 

n such tha t  x is in the n block and H~ - Ivy(x)] > k. As there is only one n 

block and x is in the n block, conditioning on P(x), P(TI(x)) , . . . ,  p(TH"(x)) 
determines vx. Thus, as there is only one n block, conditioning on the sequence 

P(x), P(Tl(x)) , . . . ,  P(T H" (x)),... there are 2 k possibilities for 

P(T-I(x) ) , . . . ,  P(T-a(x)) and they are all equally likely. Thus the entropy of 

the endomorphism is log 2. I 

4. The  sequence  of  a-algebras is n o t  standard 

L e t  s = 1 and ~n -- On-l(1 - 2 - n - 9 5 ) .  Choose ~ -- l imes > 0. The main par t  

of the proof  tha t  (X, T, #) does not generate a s tandard  decreasing sequence of 

a-algebras is the following inductive statement.  

L E M M A  4.1: Given any n E N, v E "]-H(n) \ T3F(n), and j, 0 < j <_ H(N) - Iv[, 

we have 
vj(TvBn, Bn) > cn. 

Before we star t  the proof  of this lemma we will sketch the proof  and introduce 

some notation.  We argue by induction in n. The main idea is to break up the 

sum in the calculation of v3 (TvB,, Bn) into the weighted average of terms of 

the form +k(Tv,Bn-1, Bn-1). The variation in the value of f,~ will ensure tha t  

for most  of the terms being averaged ]v~I > 3F(n - 1). Argui,lg inductively in 

n we will bound +j(TvB,~,Bn) in terms of values +a(T,,B,~_I,B~_I). Now we 

introduce notat ion to make this precise. 

Given n E N, v E T / ( , ) ,  j E N such that  0 < j <_ H(n) - Iv l ,  and an 

au tomorphism A E Ai  we will define a few subsets of T/. First let V1 be all 

E T / \  q j -1  such tha t  T, oB~ is not  in the n - 1 block or TA(+)B, is not  in the 

n - 1 block. 

Let 1/2 be all ~ E Tj such tha t  

1. either Tv+B,~ or TA(+)Bn is in the top of an n - 1 block, 

2. no extension of ~ is in 1/1, 

3. there is no v" E T 3 such tha t  v" is an extension of v and T.+,,Bn is in the 

top of an n - 1 block, and 

4. there is no v" E Tj such tha t  v" is an extension of A(~) and Tv,,Bn is in 

the top of an n -  1 block. 
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Now for each v �9 Tj \ T3_I either v is in V1 or v has exactly one contract ion 

in 172. But  bo th  cannot  happen.  From this it is easy to verify tha t  

1 
(1) ~- ; (#  of ~ �9 Vl) -}- E 2-1~1 ~-- 1 

~cV2 

and 

1 
d3(TvBn, A(Bn)) = ~ ( #  of ~ �9 V1 such tha t  P(Tv~B,)  =/= P(T~,A(~)B,)) 

(2) + E 2-1~Ldj-I~i (Tv~B"' A~(T~,A(~)B~)). 
~r V2 

We have used the notat ion A~ to denote the restriction of A to ~T,~_i~ I. 

Since one of T ~ B n  or T,,A(~)B~ is in the top of an n - 1 block, we can almost  

use the induction hypothesis to get a bound  on the summands  in line 2. Suppose 

it is Tv~B~ tha t  is in the top of an n - 1 block. In order to apply the induction 

hypothesis we just  need to make sure tha t  Tv,A@)Bn is not  in the top 3F(n - 1) 

levels of the n - 1 block. 

Now we define sets V3 and V4 so tha t  1/2 is the disjoint union of 173, where the 

induction hypothesis applies, and V4, where it does not. Let h be the largest 

k _< j such tha t  Iv[ + k - f~(v) = 0 rood H(n - 1). Let V3 consist of all ~ �9 V2 

such tha t  

1. T~oB~ is in the top of the n - 1 block and (h - f , (A(~) )  mod H(n - 1)) > 

3F(n - I) 

or 

2. TA(~)Bn is in the top of the n - 1 block and IA(~)I- h > 3F(n- I). 
Let V4 -- 172 \ 173. 

LEMMA 4.2: Given n, let v �9 WH(n) \ 7-3F(n). Then for any j < H(n) - Iv[ we 

have 
l~4(~/~149 E 2--Iv[ > 1 - 2 - " - 9 5 "  

~r 

Proof'. By line 1 this is equivalent to showing tha t  

E 2 -I~l < 2 -n -95 .  

~r 

If  T,~B,  is in the top of the n - 1 block then ]~[ = h. The number  of ~ with 

I~1 = h and (h - fn(A(~)) mod U ( n  - 1)) _< 3 F ( n  - 1) is 

_< (3F(n  - 1) + 1) s u p { #  of v' �9 T~ \ Tj-1 such tha t  f , (~ )  = k rood H(n - 1)} 
k 
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< 4F(n - 1)2 h 2 
H(n - 1) 

<_ 2h 8F(n - 1) 
H(n - 1)" 

The sum Y~. 2 -IA(~)l over all ~ such that TA(o)B~ is in the top of the n - 1 
block and 0 <_ ]A(~)[ - h <_ 3F(n - 1) is 

_<(3F(n-  1) + 1) 

• sup2 -k (#  of ~ such that I~l = k and T~Bn is in the top of the n - 1 block) 
k 

2 
<_4F(n- 1)H(n  _ 1) 

< 8F(n - 1) 
- H ( n  - 1)" 

Thus combining these two estimates gives 

E 2-1~1 -< 2-h2h8F(n-  1) 
~ev4 H ( n -  1) 

< (16)2 - - - 9 9  

< 2 -n-95. | 

Proof of Lemma 4.1: The base case is trivial. 

Bl(V) # B1 (v'). 
For any automorphism A 

(3) 

(4) 

8 F ( n -  1) + 
H(n - 1) 

This is because if v ~ v' then 

1 
da(T~B~, A(Bn)) ---~7(# of 9 E 1/1 such that P(T~oBn) ~ P(T,,A(~)Bn)) 

+ E 2-1~lda-I~l (Tv~Bn'A~(Tv'A(~)Bn)) 
~c V3 

+ E 2--1~lda--I~l (Tv~B~'A~(T~'A(~)Bn)) 
~C V4 

> ~ ( #  of ~ E V1 such that P(T, oB,) r P(Tv,A(~)Bn)) 

+ E 2-1~ldJ-I ~I(Tv~Bn'A~(Tv'A(~)Bn)) 
~E v3 

> 1 ( #  ofO e 111)+ E 2-1~Id,-I~I(T~oB"'Ao(T~'A(O) Bn)) 
~Ev3 

2 1 ( #  of 0 �9 1/1) 
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+ ~ 2 -I~1 inf f~j-I~l(Bn-1, Tv"Bn-1) 
3F(n-1)<lv"L<_H(n-1) ~ v3 

>~- ~ l (#  ~ ~ vd +~--~ Z 2-1~1 
- - 2J 

~Ev3 

>6n- I (1  -- 2 -n-95) 

>s 

Line 3 is true because if ~ E 1/1 then either Tv~Bn is not  in the n - 1 block or 

TA(~)Bn is not  in the n - 1 block. Since vs 7t A(~), Bn(vs 7 t Bn(A(~)). 
Line 4 is t rue because one of Tv~B, or TA(~)B, is in top of the n - 1 block by 

the definition of V2. The induction hypothesis  applies because of the definition 

of 1/3. As the above calculation is independent of A we have a bound  on ~. | 

Now we are ready to prove tha t  f ~P(y, y')d(v x u) ~ O. 

LEMMA 4.3: For all n there exist X ,  and Yn with #(X,~),#(Y,~) > 1/5 with the 

following property. For any x E X,~ and any y C Y,~ 

s.(~_~) (%, %) > ~. 

Proof: If  a point x is in the n block then we get a vertex vm. Define 

Xn = {xl Ivxl-  f ,(vx) mod H ( n -  1) �9 ( g ( n -  1 ) / 8 , 3 H ( n -  1)/8)}. 

Define 

Y,~ = {y[ IVyl- fn(Vy) mod H(n - 1) �9 (5H(n  - 1)/8,  7 H ( n  - 1)/8)}.  

Given x �9 X ,  and y �9 Y~ let k = U ( n  - 1) - [Ivxl - f ,(vx) mod H(n - 1)]. 

Now 

VH(,-1)(T~,%) >_ inf 1 AeAk ~ ~ s 
Ir 

By the choice of k all the i) terms are of the form VH(n-1)-k(Bn-l,Tv"Bn-1) 
with v" �9 TH(~-I) \ TH(n-1)/4. Thus 

VH(~-I)(T~,%) >_ inf C;H(~_l)_k(Bn-l,Tv,,Bn-1) >_ c, 

where the inf is taken over all v" �9 T~/(n-1) \ TH(~-I)/4. The last inequality is 

by Lemma 4.3. By the definition of F(n) and H(n) we get 

1 B 1 3 F ( j )  1 
~(x~ )  = ~(Y~) > ~ ~ ( . - 1 )  > ~ l - [  > 

j_>,~ 

which proves the lemma. | 
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THEOREM 4.1: (X, T, #) does not generate a standard decreasing sequence of 

a-algebras. 

Proos From Lemma 4.3 it follows that for all n 

f v (n) • ,,) >  /25. y')d(~, 

Thus 

f 74 o. • 

Now choose a finite partition P '  which agrees with P on all but e/100 of the 

space. Then it is clear that for all n, 

/ P' / ' '  VH(n) (y, y')d(, x .)  > e/50 and vf  (y, y )d(. x u) 74 0. 

Thus by Theorem 2.1, (X, T, #) does not generate a standard decreasing sequence 

of a-algebras. | 

5. The  two sided extens ion  is Bernou l l i  

This is proven by showing that (T, P)  is v.w.B. Of course v.w.B, is a condition 

on finite partitions but if one verifies it for a countable partition it still implies 

Bernoullicity. We will use the same techniques used by Ornstein in [7]. For any 

v = ( v l , . . . , v k )  and any i  < k le t  vii = (v l , . . . , v i ) .  Also let vl i = (vi+l , . . . ,vjvf) .  

Thus v = vlivl ~. For a fixed n and any vl E T let Sv~ be all extensions v' of Vl 

such that Iv'] = ]vll + In where l~ is a number defined below. The crux of the 

proof is the following matching lemma. 

LEMMA 5.1: For all n and k < n there exist V C 7"H~ and l n E N with the 

following property. For any Vl, v2 E V there exists a one to one map M: S,  1 --+ 

Sv2 such that 

E { #  o f i  such that T%ql+B,~ is in the top of the n -  k block and 
v~Sv 

TM(v)jlv21+ Bn is in the top of the n - k block} 

> 2~ ~ In - 2H(n - - ~q(-~-'k-) 1)#(Bn-k)(1 (9/10)k-1)  

Proof: Fix n and the proof is by induction on k. Let 

V : "]-H(n)- ln-3F(n)  \ ~3F(n )  
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where l~ = H ( n ) / 2  n. For k = 1 the  s t a t emen t  is vacuously  true.  

Note  t ha t  by the  previous  sect ion M cannot  preserve the  t ree s t ruc ture .  Along  

wi th  any v E Svl there  is a cor responding  sequence in p t~ .  I t  is defined by 

nv = (Bn(vlfv~l+~),...,Bn(vll~,11+ln)). For a given v C Svl we say t h a t  the  j 

blocks are the  intervals  of the  form [i, i + h( j ) )  which are conta ined  in [1, In] and 

Tvltv~t+~ is in the  top  of the  j block. I t  causes no loss of genera l i ty  to assume tha t  

the  extensions of vl and  v2 have the  same number  of n - 1 blocks. We will show 

we can choose M to have the  following proper ty .  If  the  sequences cor responding  

to two vert ices in S~ 1 disagree only inside n - k blocks in n - 1 blocks,  then  M 

appl ied  to these vert ices yields two vert ices whose cor responding  sequences differ 

inside n - k blocks inside n - 1 blocks (i.e., if (n~)~ = (n,,,)~ for all i inside n - k 

blocks inside n - 1 blocks of v, then  (nM(v))i ---- (nM(~,)), for all  i inside n - k 

blocks inside n - 1 blocks of M(v) ) .  

Consider  v C S ~  and  all  o ther  v I such tha t  (n~)i -- (n~,)i for all i inside n - k 

blocks inside n - 1 blocks of v. We now descr ibe  how to modi fy  M on this  set. 

W h e n  we app ly  this  p rocedure  to all such sets we get  M I such t ha t  the  induct ion  

hypothes is  holds for k + 1. 

Now consider  the  n - k blocks of v t ha t  are not  the  same as some n - k block 

of M(v) .  Pai r  these wi th  the  n -  k blocks of M ( v )  t h a t  are not  the  same as some 

n - k block of v in such a way t ha t  the  overlap of pa i red  blocks is a t  least  1/3 of 

the  length  of these blocks�9 

Now pick one pa i r  of n - k blocks. Say one of t hem is [i, i + H ( n  - k)) and the 

o ther  is [j , j  + H(n  - k)). Choose M t so t ha t  the  number  of v I in this  set wi th  

(z + f n - k ( v  I )) - (J + fn-k(M'(v')lJ) ) = 0 mod  H ( n  - 1) 

is maximized .  This  can be done for a t  least  hal f  of the  v ~ in the  set since 

V / f f ~ -  k) > >  H ( n  - k - 1). Now repea t  this  p rocedure  for the  o ther  pa i red  

n - k blocks. Then  r epea t  this  procedure  for ano the r  v. Doing this  we have 

ma tched  at  least  1/10 of the  n - k - 1 blocks inside the  unma tched  n - k blocks 

which justif ies the  induct ion  hypothes is  for k + 1. II 

THEOREM 5.1: The transformation ( ) ( ,  T, #) is Bernoulli. 

Proof'. Since (X, T, #) is dyadic  and  has en t ropy  log 2, we need only to show 

tha t  (X, T, #) is very weak Bernoull i .  I t  also suffices to  show tha t  (X,  T -1 ,  #) is 

very weak Bernoull i .  

Given e, choose n and k so t ha t  

2 In (9/10) k-1 + (1 - # ( B n - k ) )  + 2H(n  - 1) < e 
l,~ 
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and  
3 F ( n )  + In 

U ( n )  #(B, , )  > 1 -  ~. 

Let  G be the  set of all  x such t ha t  x is in the  n block and Vx C V,,. Then  

#(G)  - 3 F ( n )  + In 
H ( n )  # (Bn)  > 1 - c .  

Now given any x , x '  C G we get v~,vx,  C Vn. Now choose M so t ha t  

1. the  conclusion of the  previous  l emma  is sat isfied and  

2. if M ( v )  = v' and  [i, i + U ( n  - k)) is an n - k block for bo th  v and  v' then  

(nv)j  = (nv,) 3 for all j C [i, i + U ( n  - k)).  

Now the  f ract ion on n - k blocks inside n - 1 blocks t ha t  are unma tched  is a t  

most  (9/10) k-1.  The  f ract ion of an n - 1 block t ha t  is not  pa r t  of n - k blocks is 

less t han  (1 - # ( B ~ - k ) )  while the  fract ion of [1, l,~] t ha t  is not  in an n - 1 b lock 

is a t  most  2 H ( n  - 1)/In. Thus  

1 
# of i e [1, In] such t ha t  (nv),  • (nM(v'))i 

21nl~ 
yeS(v) 

(9/10) k-1 + (1 # ( B n - k ) )  + 2 H ( n -  1) - ~ s  

Thus  T -1 is very weak Bernoull i .  | 
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