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ABSTRACT

Any measure preserving endomorphism generates both a decreasing
sequence of o-algebras and an invertible extension. In this paper we
exhibit a dyadic measure preserving endomorphism (X, T, ) such that
the decreasing sequence of o-algebras that it generates is not isomorphic
to the standard decreasing sequence of o-algebras. However the invertible
extension is isomorphic to the Bernoulli two shift.

1. Introduction

Consider the one sided Bernoulli two shift. This transformation has state space
X ={0,1}" and (1/2,1/2) product measure u. The action on X is T(z); = T,41.
In this paper we consider two properties that the one sided Bernoulli two shift has
and give an example of an endomorphism which shares one of these properties

but not the other.

The first property is the decreasing sequence of o-algebras that the one sided
Bernoulli two shift generates. A decreasing sequence of o-algebras is a measure
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space (X, Fo, ), and a sequence of o-algebras Fo D Fy D Fp---. Let F be
the Borel o-algebra of X and let F, = T~*F. This sequence has the property
that F;|Fi+1 has 2 point fibers of equal mass for every ¢. A decreasing sequence
of o-algebras with this property (and an endomorphism which generates such a
sequence) is called dyadic. This example has the property that [).F, is trivial.
A. Vershik, who began the modern study of such decreasing sequences of o-
algebras (8], refers to this example as the “standard dyadic” example. Any mea-
sure preserving endomorphism (X, T, F, u) generates a decreasing sequence of
o-algebras by setting F; = T*F.

Two decreasing sequences of o-algebras are called isomorphic if there exists
a 1-1 measure preserving map between the two spaces that carries the i-th o-
algebras to each other. In [9] Vershik showed that there exist dyadic sequences
of o-algebras with trivial intersection that are not isomorphic to the standard
dyadic example. In [9] Vershik also gave a necessary and sufficient condition
for a dyadic decreasing sequence of o-algebras to be standard. An equivalent
description of standardness for dyadic sequences is for there to exist a sequence
of partitions {F;} of X into two sets, each of measure 1/2, such that

1. the partitions P; are mutually independent and

2. for each i, F, = \/or, Pa.

It is important to note that in the case that the decreasing sequence of o-
algebras comes from an endomorphism there is no assumption that the P; are
stationary (i.e., P; is not necessarily 7~ !(P,_1)). If an endomorphism generates
a decreasing sequence of o-algebras that is isomorphic to the standard dyadic
decreasing sequence of o-algebras, then we call that endomorphism standard.

Any measure preserving endomorphism (X, T, F, i) also generates an invertible
measure preserving automorphism (X, T, F, ii). We say that the system (X, T, jz)
is isomorphic to the (invertible) Bernoulli 2 shift if there exists a partition P of
X into two sets, each of measure 1/2, such that

1. the partitions T¢P are mutually independent and

2. F=\lho_ TP
If a dyadic endomorphism has an invertible extension which is isomorphic to the
(invertible) Bernoulli 2 shift, then we say the endomorphsim is Bernoulli.

Both Bernoulliness and standardness are then equivalent to finding a mutually
independent sequence of partitions which generate the entire o-algebra. There
is no a priori reason that a standard endomorphism must be Bernoulli or that a
Bernoulli endomorphism must be standard as in the case of standardness the par-
titions must be past measurable but not necessarily stationary and for Bernoulli-
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ness they must be stationary but not necessarily past measurable. In this paper
we show that in fact neither condition is stronger than the other.

It is already known that standard does not imply Bernoulliness of an endo-
morphism. Feldman and Rudolph proved in [3] that a certain class of dyadic
endomorphisms generate standard decreasing sequences of o-algebras. Among
these is an endomorphism which Burton showed has a two sided extension which
is not isomorphic to a Bernoulli shift [1]. In this paper we construct a dyadic
endomorphsim with entropy log 2 that is Bernoulli but the endomorphism is
not standard. In [9] Vershik created an infinite entropy endomorphism which is
Bernoulli but not standard. To complete the picture we mention that the one
sided Bernoulli 2 shift is both Bernoulli and standard. The [T, T~} endomor-
phism was proved not to be Bernoulli by Kalikow [6] and not to be standard by
Heicklen and Hoffman [5].

2. Notation

We begin to introduce some notation to help understand the tree structure of a
dyadic endomorphism. Consider a rooted 2-ary tree with 2™ vertices at depth
n > 0. Each vertex at depth n connects to two vertices at the depth n + 1. For
each pair of vertices at depth n + 1 which connect to the same vertex at depth
n we label one of the vertices 0 and the other vertex 1. This then gives each
vertex a second label which is a nontrivial finite word of zeros and ones. This is
given by a sequence of values we see along the unique path of vertices from the
root to the given vertex. In this form we can concatenate vertices v’ and v by
concatenating their labels. Call this labeled tree 7. If we truncate the tree at
depth n > 0 we call it 7,,.

We also use the notation v € T (or v € Ty,) to indicate that v is a vertex of T
(or Tp). set of vertices n, for For v € T and at depth i (i.e., v € T; ~T,_1) we
write |v| = 4 and we write v as a list of values vy,...,v, from {0,1} where this
is the list of labels of the vertices along the branch from the root to v. We say
that v’ is an extension of v if v' = vv" for some v” € 7. We also say that v is
a contraction of v'.

Let (X, T, p, F) be a uniformly 2 to 1 endomorphism. Then each z € X has
two inverse images. There exists a measurable two set partition K of X such that
almost every z has one preimage in each element of K. Label the sets of K as K
and K. Foreach ¢ € {0,1} and z € X define 7,(z) to be the preimage of z in K,.
We now define a set of partial inverses for T. For v = (vq,...,v,) € T define
Ty(z) = Ty, (...(Ty, (z))). Also define the tree name of = by 7,(v) = K(T,(z)).
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More generally, for any finite set P we call a function A from 7 to P a 7, P name.
For us a subtree of 7 will be a path connected set of vertices. Notice that this
means a subtree will have a root which is the unique vertex in it of least depth,
and will consist of a collection of connected paths descending from this root. If
T’ is any subtree of 7 then a 77, P name h is any function from 77 to P. A
7', P name on a subtree gives rise to a collection of names indexed by intervals
in —N by listing in negative order the names that appear along vertices of the
subtree (with multiplicities). Be sure to keep in mind that in this translation
vertices at depth n in the tree correspond to point in 7" for the action, i.e.,
there is a switch in sign. More accurately, such a name on a subtree gives rise
to a measure or distribution on such finite names where each name of length ¢ is
given mass 27! (again counting multiplicities). If this original tree name is the
tree name of a point, then this distribution will be the conditional distribution
of the various past cylinders given the path to the root of the subtree.

We say that a vertex v is in the bottom of the subtree T” if no extension of v
is a vertex in T'. We define 7", the concatenation of two subtrees T’ and T,

as follows. Let
™ — T’ U ( U UT")
bottom of T’

where the second union is taken over all v which are in the bottom of 77. That
is to say we attach to each vertex in the bottom of T a copy of the subtree 7".
We concatenate tree names in an analogous manner by extending the labeling of
T to be the labeling of 7’ on each of the copies of 7' attached at the bottom of
T.

Let A be the collection of all bijections of the vertices of 7 that preserve the
tree structure. We refer to this as the group of tree automorphisms. Let A,
be the bijections of the vertices of 7, preserving the tree structure. To give a
representation to such automorphisms A notice that from A we obtain a permu-
tation m, of {0,1} at each vertex giving the rearrangement of its 2 immediate
extensions. An automorphism of 7;, will be represented by an assignment of a
permutation of {0, 1} to each vertex of the tree including the root and excepting
those at depth n.

Fix a partition P. The Hamming metric between two 7y, P names W and W’
is given by
__ # of v € Ty~ T,y such that W(v) # W'(v)

d,(W,W') = = .




Vol. 130, 2002 BERNOULLI BUT NOT STANDARD 369

Now define
On(y,9) = (u,y) = jinf (da(A(Ty), Ty)) -

In the case that {F,,} comes from a dyadic endomorphism Vershik’s standardness
criterion is the following.

THEOREM 2.1 [9]: {F,} is standard iff for every finite partition P,

/ﬁf(y,y')d(u X v) = 0.

Remark 2.1: A proof of this can also be found in [4].

3. Construction

The construction will be done by cutting and stacking. Cutting and stacking
in Z can be viewed in two ways. One can regard the construction as building a
sequence of Rokhlin towers of intervals labeled by symbols from some labeling set
P. Successive towers are built by slicing up and restacking. The map is defined
on ever larger parts of the space until it is eventually defined almost everywhere.
One can also view the stack as a distribution on the set of all finite names (most,
of course, given mass zero). For each length k € N one can construct a measure on
cylinders of length k from each stack by calculating the density of occurrence of
that cylinder within the stack. These measures on cylinders will converge weak*
to a shift invariant measure on PZ. The constructed action then is the shift map
on PZ. Usually both these views give the same action, although this depends
on whether the labels in the first description give a generating partition for the
action. For our construction we will follow the latter perspective by constructing
names on finite subtrees. We have already described how to translate such a
name into a distribution on names on intervals in —N. This translation links our
work to the traditional cutting and stacking construction of Z actions.

The construction will build inductively one 7g(,) name, B, for each n. From
this sequence of names we will construct a sequence of measures on 7, P-names
by calculating the density of occurrences of the subtree name within each B,.
These measure will converge weak* to a measure on 7, P names. This measure
extends to a shift invariant measure on PZ and its restriction to PN will be the
endomorphism we are interested in. Disjoint occurrences of copies of the name
B,, in the past trees of points will place a block structure on these tree names.
We consider two points z and y and their 2™ inverse images under (T'~™). The
construction will be done in such a way that it will be impossible to find a
pairing of the 2™ inverse images of x with those of y by a tree automorphism
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that will match up the block structures of the paired inverse images. But there is
a bijection of the inverse images which does not preserve the tree structure and
which matches up the block structure.

To do the construction we will need three sequences of integers, H(n), the
height of n tree, N(n), the number of copies of n — 1 trees concatenated to form
the n tree, and a parameter F(n). These sequences will be defined inductively.
Let H(1) = 1000. Given that H(n — 1) has been defined, choose F(n) so that
VF(n) > 2"*t100H(n — 1). Also choose N(n) so that

H(n) =3F(n) + N(n)H(n — 1) > 2"T190F (),

An element of the partition P is of the form (a,n,v), where a € {0,1}, n € N,
and v € 7. Notice that P will not be a finite partition. Both standardness
and Bernoullicity are characterized by the behavior of finite partitions. We will
explain how this issue is handled at the appropriate points.

For any v € T define

k
fn(v) = minimum {3F(n), the smallest k¥ < |v| such that Zl v; = F(n)}.

We will now inductively define Tg ), P names which we call B,,. The name B,
is defined so that each vector v € Ty(1) gets a distinct label. For any v € Ty
assign By (v) = (v}y), 1, ).

Now assume that B,, has been defined. Create the subtree that consists of all
vectors v € T3p(ny such that leul v; < F(n). Give each of these vertices a label
in P which is not seen in B,,. Now concatenate this tree name with N(n) copies
of By—;. Then for any vertex v € Tg(,) which has not yet received a label assign
it a label which has not been used before.

To make this precise for any v € Ty(n) such that Zlf" v; < F(n) or
[v] > fa(v) + N(n)H(n — 1) assign Byp(v) = (vjy|,n,v). If v € Ty(n) such that
|v| = fn(v) € [1, N(n)H(n — 1)] let

i = Vig f, (v)+ (10|~ Fu(v))/H(n=1)| H(n—1)»
where |z]| is the greatest integer less than or equal to z. Then define B,(v) =
B,,_1(%). This inductively defines B,,.

The Tg(n) name B, defines a measure p, on PTx k < H(n) as follows. Any

h € PTx receives mass

1
i) =3y —k 5 12
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where the sum is taken over all v € Tg(n)_i such that h(v') = Bp(vv') for all
v € TH(n-1)- The measures puy,, which project, as we have described, to measures
on names labeled by [—n, ..., —1] we still refer to as p,. As these measures on
names are precisely what would arise if one did traditional cutting a stacking to
create the distribution on names associated with B,,, we conclude the y,, converge
in the weak * topology to a shift invariant measure 2 on PZ. Restrict j to PN
to give the endomorphism 7' we claim is Bernoulli but not standard.

As the labels used to fill in the top and bottom of the tree name only appear
there, the block structure on the past trees of points are unique.

Let Kg be the set of € X such that P(z) is of the form (0, x, ¥} and K be the
set of z € X such that P(z) is of the form (1, ¥, *). One sees from the construction
that T: Ko —» X and T: K; — X are both 1-1 and onto. This defines partial
inverses Ty ! and T; ! both of which have constant R.N. derivatives of 1/2 and
hence T is a uniformly dyadic endomorphism. By the method described in the
previous section we can define T, for any v € T and 7T, for any z € X.

We say that a point z € X is in the n block if there exists v; € Tg(n) such
that for all v’ € Tg(n)—|v,| We have

T2 (") = B (vzv").

We say that « is in the top of the n block if |v;| = 0. For general tree names
we will use the corresponding definitions of being in the n block or being in the
top of the n block.

LEMMA 3.1: For anyn > 2 and k € [0, H(n — 1)) and | > 3F(n) the number of
v € T Ti—1 such that f(v') = k mod H(n — 1) is less than 2'¥1/H(n — 1).

Proof: It causes no loss of generality to assume that | = 3F(n). Since
F(n) >> H(n — 1) this follows from the local central limit theorem. See,
for example, {2] page 113. |

A slightly different version of this lemma is the following.

COROLLARY 3.1: sup, 27" (# of v such that |5| = k and T; By, is in the top of
the n — 1 block) < 2/H(n —1).

Proof: It causes no loss of generality to assume that k > 3F(n). This is
because if & < 3F(n), then the quantity we are trying to maximize is greater
for k + H(n — 1) than for k. Then this is just a restatement of the previous
lemma. ]



372 C. HOFFMAN AND D. RUDOLPH Isr. J. Math.
LEMMA 3.2: The endomorphism (X, T, p) has entropy log2.

Proof: By definition P is a generating partition for the endomorphism. Thus
the entropy of the endomorphism is the same as the entropy of the endomor-
phism relative to P. For almost every point x € X and integer k£ there is an
n such that z is in the n block and H,, — |v,(x)| > k. As there is only one n
block and z is in the n block, conditioning on P(z), P(T*(z)),..., P(TH"(z))
determines v;. Thus, as there is only one n block, conditioning on the sequence
P(z), P(T'(z)),...,P(TH~(z)),... there are 2F  possibilities for
P(T~Y(x)),...,P(T~%(z)) and they are all equally likely. Thus the entropy of
the endomorphism is log 2. ]

4. The sequence of s-algebras is not standard

Let ¢, =1 and €, = €,_1(1 — 27" %), Choose ¢ = lime,, > 0. The main part
of the proof that (X, T, ) does not generate a standard decreasing sequence of
o-algebras is the following inductive statement.

LEMMA 4.1: Given any n € N, v € Ty > Tap(n), and j, 0 < j < H(N) — ||,
we have
17]'(Tan,Bn) > €pn.

Before we start the proof of this lemma we will sketch the proof and introduce
some notation. We argue by induction in n. The main idea is to break up the
sum in the calculation of @,(T,B,, By) into the weighted average of terms of
the form (T, Bp_1, Bn—1). The variation in the value of f, will ensure that
for most of the terms being averaged |v'| > 3F(n — 1). Arguing inductively in
n we will bound (T, By, B,) in terms of values @ (T, Bn_1, By—1). Now we
introduce notation to make this precise.

Given n € N, v € Tg(n), j € N such that 0 < j < H(n) — |v], and an
automorphism A € A; we will define a few subsets of 7;. First let V; be all
¥ € T; ™ Tj—1 such that T3 By, is not in the n — 1 block or T4(5) By, is not in the
n — 1 block.

Let V; be all ¥ € T such that

1. either T3 By, or T4(3)By is in the top of an n — 1 block,

2. no extension of ¥ is in V7,

3. there is no v € 7, such that v’ is an extension of v and Ty3+ By, is in the

top of an n — 1 block, and

4. there is no v” € T; such that v” is an extension of A(%) and T,» By, is in

the top of an n — 1 block.
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Now for each v € T; ~T,_; either v is in V7 or v has exactly one contraction
in V5. But both cannot happen. From this it is easy to verify that

(1) (#ofieV)+ Y 27 =1

DEV,

1
2
and

1
d,(TyBn, A(By)) :g(# of ¥ € Vi such that P(T,;B,) # P(Tv,A(f,)Bn))

(2) + Y 27, 5 (To5Ba, ATy a(5) Bn))-
vEVs
We have used the notation Ag to denote the restriction of A to 97,_5.

Since one of Ty By, or Ty 4(3) B is in the top of an n — 1 block, we can almost
use the induction hypothesis to get a bound on the summands in line 2. Suppose
it is T; By, that is in the top of an n — 1 block. In order to apply the induction
hypothesis we just need to make sure that T, 4(3) By, is not in the top 3F(n — 1)
levels of the n — 1 block.

Now we define sets V3 and Vy so that V5 is the disjoint union of V3, where the
induction hypothesis applies, and V4, where it does not. Let h be the largest
k < j such that |v| + &k — fu(v) = 0 mod H(n — 1). Let V3 consist of all 9 € V
such that

1. Ty3 By is in the top of the n — 1 block and (h — f,(A(%)) mod H(n —1)) >

3F(n—1)
or

2. T(3)Bn is in the top of the n — 1 block and |A(v)| — h > 3F(n — 1).

Let Vy = Vo N V3.

LEMMA 4.2: Given n, let v € Ty(n) > Tsp(n)- Then for any j < H(n) — |v| we
have 1
5 (# ol 0 €Vi) + PR LS T ol
BEVa

Proof: By line 1 this is equivalent to showing that

Z 2—|'f)| < 2—n—95‘

v€EVy
If T3 By, is in the top of the n — 1 block then |§| = h. The number of ¥ with
|o] = h and (h — fn(A(?)) mod H(n - 1)) < 3F(n—1) is

< (3F(n—1) +1)sup{# of v’ € T, ~ T,_1 such that fn(?) = k mod H(n — 1)}
k
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2
8F(n—1)
<2 H(n-1)"

The sum Z2‘|A('7)| over all ¥ such that T4 By is in the top of the n — 1
block and 0 < |A(%)| —h < 3F(n—1) is

<BF(n-1)+1)
x sup 2% (# of # such that || = k and T;B,, is in the top of the n — 1 block)
k

<4F(n — 1)3(72_—15
8F(n—1)
SHn-1)

Thus combining these two estimates gives

8F(n—1) 8F(n—1)

218l < 9=hoh +

1};4 H(n-1)  H(n-1)
S (16)2—71 -99

Proof of Lemma 4.1: The base case is trivial. This is because if v # v’ then

By(v) # By (v").

For any automorphism A

dy(TyBn, A(Bn)) :l.(# of 9 € V1 such that P(Ty3B,) # P(Ty a(3)Bn))
+ Y 271, 15 (TosBn, As(Tyr a3 Bn))
IEV;
+ Z 2- o Id] |1;|(TvanaA ( 'A('U)Bn))
vEV,

zi(# of & € V; such that P(T,3B,) # P(Ty ac)Bn))
+ 3" 271ld;_ 5Ty Bn, As(Ty a5) Bn))
TEV3

1
(3) '2“(# of o € V1) + Z 27191d, _\5/(Tvs B, As(Tor a5y Bn))
eV

—_

(4) 2—(# of v € V)
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2-1%l inf Br1, Ty B
+ Z 3F(n— 1)<1|£11”|<H(n 1 _7 |v|( n-1y Ly On 1)

‘UEV3

>€n1 (#ofvEV1 + €n_ 122‘”'
vEVy

>6n_1(1 - 2—n—95)
>€n.
Line 3 is true because if ¥ € V; then either T,; B, is not in the n — 1 block or
T'4(3)Bn is not in the n — 1 block. Since vd # A(9), B,(v0) # Bn(A(9)).
Line 4 is true because one of T3 By, or Ty(3)By, is in top of the n — 1 block by
the definition of Va. The induction hypothesis applies because of the definition
of V3. As the above calculation is independent of A we have a bound on . |

Now we are ready to prove that [ 9% (y,y")d(v x v) 4 0.

LEMMA 4.3: For all n there exist X,, and Y, with pu(X5,), p(Yn) > 1/5 with the
following property. For any © € X, and any y € Y,

TH(n-1)(Tz, Ty) > €.
Proof: 1If a point x is in the n block then we get a vertex v,. Define
Xn = {2| lvz| = fn(vs) mod H{n — 1) € (H(n ~1)/8,3H(n — 1)/8)}.
Define
Y, = {y| lvy| — fn(vy) mod H(n —1) € (5H(n —1)/8,7H(n —1)/8)}.
Givenz € X,, and y € Yy, let k= H(n — 1) — [Jvg| — fn(vz) mod H(n — 1)).

Now
T n-1)(Te, Ty) > lnf Z UH(n-1)-k(T5(Tz), Ta@) (Ty)-
|6]=k
By the choice of k all the 9 terms are of the form ¥ (,—1)—k(Bn-1, Ty Bn_1)
with v" € Tyn-1) > Tr(n—1y/4- Thus
Ve (n-1)(Tz, Ty) 2 inf Op(n_1)—k(Bn-1, TynBn_1) > ¢,

where the inf is taken over all v" € Tg(n_1) > Ta(n-1);4- The last inequality is
by Lemma 4.3. By the definition of F(n) and H(n) we get

1 3F(y) _ 1
w(Xn) = p(¥n) > 7p(Bny) 2 4}1 7)) 25

which proves the lemma. |
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THEOREM 4.1: (X, T, ) does not generate a standard decreasing sequence of
o-algebras.

Proof: From Lemma 4.3 it follows that for all n
/UI};(n) (yayl)d(V X V) > 6/25

Thus
/ v (4,9 )d(v x v) 4 0.

Now choose a finite partition P’ which agrees with P on all but /100 of the
space. Then it is clear that for all n,

/vf}'(n)(y, y)d(v x v) > ¢/50 and /v}"(y, y)d(v x v) A 0.

Thus by Theorem 2.1, (X, T, 1) does not generate a standard decreasing sequence
of o-algebras. |

5. The two sided extension is Bernoulli

This is proven by showing that (T, P) is v.w.B. Of course v.w.B. is a condition
on finite partitions but if one verifies it for a countable partition it still implies
Bernoullicity. We will use the same techniques used by Ornstein in [7]. For any

v=(v1,...,v) and any i < k let v]; = (vy,...,v;). Alsolet v|* = (viy1,...,vy)).
Thus v = v|;v|*. For a fixed n and any v; € T let S,, be all extensions v of v;
such that |v'| = |v1] + I, where l,, is a number defined below. The crux of the

proof is the following matching lemma.

LEMMA 5.1: For all n and k < n there exist V C Ty, and I, € N with the
following property. For any vy,vs € V there exists a one to one map M: S,, —
Sy, such that

Z {# of 1 such that Tvl|u1|+,Bn is in the top of the n — k block and
veES,

TM(v)l|u2|+:B" is in the top of the n — k bIock}
I, —2H(n —1) -
> ot (Bak)(1 — (9/10)%71).
2 2 2 e (B (1 - 910/
Proof: Fix n and the proof is by induction on &. Let

V = Tra(n)-1,-3F(n) > Tar(n)
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where l, = H(n)/2". For k = 1 the statement is vacuously true.

Note that by the previous section M cannot preserve the tree structure. Along
with any v € S,, there is a corresponding sequence in P'». It is defined by
Ny = (Bn(v|jyy41)> - - > Bn(v|jo1)+1,))- For a given v € §,, we say that the j
blocks are the intervals of the form [i,+ (7)) which are contained in [1,[,] and
T'U||v1|+1
the extensions of v; and v, have the same number of n — 1 blocks. We will show

is in the top of the j block. It causes no loss of generality to assume that

we can choose M to have the following property. If the sequences corresponding
to two vertices in S, disagree only inside n — k blocks in n — 1 blocks, then M
applied to these vertices yields two vertices whose corresponding sequences differ
inside n — k blocks inside n — 1 blocks (i.e., if (ny), = (ny), for all i inside n — &k
blocks inside n — 1 blocks of v, then (na(v))i = (nar(vy), for all ¢ inside n — &
blocks inside n — 1 blocks of M (v)).

Consider v € S,, and all other v’ such that (n,); = (n,); for all i inside n —
blocks inside n — 1 blocks of v. We now describe how to modify M on this set.
When we apply this procedure to all such sets we get M’ such that the induction
hypothesis holds for & + 1.

Now consider the n — k blocks of v that are not the same as some n — k block
of M(v). Pair these with the n — k blocks of M (v) that are not the same as some
n — k block of v in such a way that the overlap of paired blocks is at least 1/3 of
the length of these blocks.

Now pick one pair of n — k blocks. Say one of them is [i,s+ H(n — k)) and the
other is [j,7 + H(n — k)). Choose M’ so that the number of v’ in this set with

(i + fa-w(V'[") = (G + fa—r(M'(v")]")) = 0 mod H(n — 1)

is maximized. This can be done for at least half of the v’ in the set since
VF(n—k) >> H(n — k —1). Now repeat this procedure for the other paired
n — k blocks. Then repeat this procedure for another v. Doing this we have
matched at least 1/10 of the n — k — 1 blocks inside the unmatched n — k blocks
which justifies the induction hypothesis for k£ + 1. [

THEOREM 5.1: The transformation (X, T, fi) is Bernoulli.

Proof: Since (X, T, ) is dyadic and has entropy log 2, we need only to show
that (X, T, i) is very weak Bernoulli. It also suffices to show that (X, T, i) is
very weak Bernoulli.

Given ¢, choose n and & so that

21(9/10)* 1 + (1 — p(Bpp)) + ——~ < ¢
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and 3P(n) + 1
n)+ i,
S T By > 1 —e
H(n) w(Bp)>1—¢
Let G be the set of all x such that z is in the n block and v, € V,,. Then
_3F(n) +1,
u(G) = —Wﬂwn) >1-e

Now given any z,z’ € G we get vy, vy € V,,. Now choose M so that

1. the conclusion of the previous lemma is satisfied and

2. if M(v) =v'" and [i,i+ H(n — k)) is an n — k block for both v and v’ then

(ny)j = (nyr), for all j € [i,i+ H(n — k)).

Now the fraction on n — k blocks inside n — 1 blocks that are unmatched is at
most (9/10)%~1. The fraction of an n — 1 block that is not part of n — k blocks is
less than (1 — p(By,—k)) while the fraction of [1,1,] that is not in an n — 1 block
is at most 2H(n — 1) /l,,. Thus

1
W Z # ofi € [1,ln] such that (nu), # (nM(v:))i

" vES(v)
2H(n -1
< (9/10)%71 + (1 — u(Bn—i)) + # <e
n
Thus T! is very weak Bernoulli. |
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